NUMERICAL ANALYSIS OF PEM FUEL CELL GAS FLOW FIELD CHANNEL

Jenn-Kun Kuo
Graduate Institute of Greenergy Technology
National University of Tainan
Tainan, Taiwan, 70005

Shiuh-Ming Chang
Mechanical and Automation Engineering Department
Kao Yuan University
Kaohsiung, Taiwan, 821
csmoo@cc.kyu.edu.tw

ABSTRACT
Using a three-dimensional computational model, numerical simulations are performed to investigate the performance characteristics of proton exchange membrane fuel cells (PEMFCs) incorporating either a conventional straight gas flow channel or a novel wave-like channel. The simulations focus particularly on the effect of the wave-like surface on the gas flow characteristics, the temperature distribution, the electrochemical reaction efficiency and the electrical performance of the PEMFCs at operating temperatures ranging from 323~343 K. The numerical results reveal that the wave-like surface enhances the transport of the reactant gases through the porous layer, improves the convective heat transfer effect, increases the gas flow velocity, and yields a more uniform temperature distribution. As a result, the efficiency of the catalytic reaction is significantly improved. Consequently, compared to a conventional PEMFC, the PEMFC with a wave-like channel yields a notably higher output voltage and power density.

INTRODUCTION
Since their introduction by NASA in the 1960’s, proton exchange membrane fuel cells (PEMFCs) have attracted considerable interest within industrial and academic circles as a potential power source for a range of mobile applications. Characterized by a compact size, an efficient performance, a straightforward design and operation, and a high degree of environmental friendliness, it seems likely that PEMFCs will one day replace gasoline and diesel internal combustion engines as the method of choice for vehicular applications. The literature contains many experimental and numerical investigations into the transport phenomena and electrical performance of PEMFCs. For example, Springer et al. (1991) developed a one-dimensional isothermal model of a PEMFC and showed that the water diffusion coefficient, electroosmotic drag coefficient, water sorption isothermals and membrane conductivities all varied as a function of the membrane water content.

In a PEMFC, the design of the flow delivery system has a critical effect on the cell performance. Various flow channel designs have been proposed, including straight, serpentine and inter-digitated. Whilst each configuration has its own particular advantages, the inter-digitated design has attracted particular interest due to its efficiency in expelling the liquid water byproduct from the porous electrode. For example, in Chiang et. al. (2007), two dead-end flow channels were used to force the reactant gases through the diffusion layer via a convection effect rather than diffusion. It was shown that the resultant shear force acting on the fluid prompted the forcible ejection of liquid water from the pores of the membrane. Many sophisticated numerical models have been developed to enable the influence of the flow field configuration on the transport phenomena and electrical performance of a PEMFC to be evaluated (Haraldsson and Wipke, 2004; Sousa and Gonzalez, 2005; Cheddie and Munroe, 2005; Weber and Newman, 2005).

In conventional PEMFCs with straight gas flow channels, the reactant gases diffuse into the catalyst layer through the gas diffusion layer. However, the diffusion process is inherently slow, and hence the electrical performance of the PEMFC is inevitably limited. In an attempt to resolve this problem, Kuo (2006) and Chen (2007) proposed a novel PEMFC design in which the gas flow channel had a wave-like structure. Using a 3-D computational model, the authors showed that this unique channel design improved the uniformity of the velocity and temperature distributions within the channel and reduced the intersection angle between the dimensionless velocity vector and the temperature gradient, thereby improving the heat transfer characteristics of the fuel cell. Only complete electronic manuscripts will be accepted. The pages will be printed directly as provided. To ensure that your paper will be reproduced properly, you should strictly observe the following instructions.

SIMULATION MODEL
The simulations performed in this study are based on a steady-state, single-phase, multi-species, three-dimensional mass transfer model of the PEMFC. Figure 1 presents a 3D schematic illustration of the fuel cell. As shown, the major components include: (1) two wave-like flow channels; (2) two carbon paper gas diffusion layers (GDLs); (3) two catalyst layers; and (4) a porous membrane. The geometric and physical parameters
applied in the simulations are summarized in Table 1. Note that some minor parameters (e.g. the internal resistance, the material properties, and so forth) are omitted from this table, but can be found in the literature. The operating pressure and temperature are assumed to be 1 atm and 323 K, 333 K or 343 K, respectively. Regarding the reactant gases, the anode is supplied with humidified hydrogen with a mass fraction of 70/30% H₂/H₂O, while the cathode is fed with saturated oxygen with a mass fraction of 21/79% O₂/N₂. The N₂ gas serves as a diluent and is assumed to be inert.

Note that for computational efficiency, the model is divided into seven separate layers, namely the upper wave-like channel, the anode GDL, the anode catalyst layer (CL), the membrane, the cathode CL, the cathode GDL and the lower wave-like channel. In general, the heat and mass transfer characteristics of PEMFC gas flow channels can be modeled using conventional mass conservation, Navier-Stokes, and energy and species conservation equations. The basic 3-D gas transport equations for a general PEMFC can be expressed as follows:

Continuity equation:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.
\]

(1)

Momentum equation:

\[
\varepsilon_{\text{eff}} \left(\frac{\partial \mathbf{u}}{\partial x} + v \frac{\partial \mathbf{u}}{\partial y} + w \frac{\partial \mathbf{u}}{\partial z} \right) = -\frac{\varepsilon_{\text{eff}}}{\rho} \frac{\partial p}{\partial x} + \nu \varepsilon_{\text{eff}} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + S_u
\]

(2)

\[
\frac{\partial \mathbf{u}}{\partial x} + v \frac{\partial \mathbf{u}}{\partial y} + w \frac{\partial \mathbf{u}}{\partial z} = -\frac{\varepsilon_{\text{eff}}}{\rho} \frac{\partial p}{\partial y} + \nu \varepsilon_{\text{eff}} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + S_u
\]

(3)

\[
\frac{\partial \mathbf{u}}{\partial x} + v \frac{\partial \mathbf{u}}{\partial y} + w \frac{\partial \mathbf{u}}{\partial z} = -\frac{\varepsilon_{\text{eff}}}{\rho} \frac{\partial p}{\partial z} + \nu \varepsilon_{\text{eff}} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + S_u
\]

(4)

Energy equation:

\[
\varepsilon_{\text{eff}} C_v \left(\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} \right) = k \varepsilon_{\text{eff}} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + S_e
\]

(5)

Species conservation equation:

\[
\varepsilon_{\text{eff}} \left(\frac{\partial C_j}{\partial x} + v \frac{\partial C_j}{\partial y} + w \frac{\partial C_j}{\partial z} \right) = D_{j,\text{eff}} \left(\frac{\partial^2 C_j}{\partial x^2} + \frac{\partial^2 C_j}{\partial y^2} + \frac{\partial^2 C_j}{\partial z^2} \right) + S_j
\]

(6)

Charge conservation equation:

\[
\varepsilon_{\text{eff}} \left(\frac{\partial n_j}{\partial x} + v \frac{\partial n_j}{\partial y} + w \frac{\partial n_j}{\partial z} \right) = -S_d
\]

(7)

The analytical formulae for the source terms \(S_a, S_h, S_w, S_f, S'_c \) and \(S_d \) in Eqs. (2)-(7). Note that in these formulae, the parameters \(\varepsilon_{\text{eff}}, C_F, k_p \) and \(Z_f \) denote the effective porosity, the quadratic drag factor, the permeability and the valence of the species, respectively. Furthermore, \(D_{k,\text{eff}} = D_k \varepsilon_{\text{eff}} \) represents the effective diffusion coefficient of the kth component of the reactant fuel (Lee and Chu, 2006; Hwang et al., 2006; Hwang and Chen, 2006). In the PEMFC, the generation/consumption of the chemical species and the charge transfer take place only in the catalyst layer. Therefore, the source terms in Eqs. (6) and (7) can be implemented in accordance with the principles of electrochemical kinetics, i.e.

\[
S_{H_2} = -\frac{j_{\text{anode}}}{2F}
\]

(8)

\[
S_{O_2} = -\frac{j_{\text{cathode}}}{4F}
\]

(9)

\[
S_{H_2O} = -\frac{j_{\text{cathode}}}{2F}
\]

(10)

where \(j \) denotes the transfer current density and is derived from the following Butler-Volmer kinetics expressions:

\[
j_a = j_{\text{act}} \left(\frac{C_{\text{O}_2}}{C_{\text{O}_2,\text{act}}} \right)^{\frac{1}{2}} \times \left[\exp \left(\frac{a_F}{RT} \eta_{\text{act}} \right) - \exp \left(-\frac{a_F}{RT} \eta_{\text{act}} \right) \right] \]

(11)

\[
j_c = -j_{\text{act}} \left(\frac{C_{\text{H}_2}}{C_{\text{H}_2,\text{act}}} \right)^{\frac{1}{2}} \times \left[\exp \left(\frac{a_F}{RT} \eta_{\text{act}} \right) - \exp \left(-\frac{a_F}{RT} \eta_{\text{act}} \right) \right]
\]

(12)

where \(\eta_{\text{act}} \) is the surface over potential and is defined as

\[
\eta_{\text{act}} = \varphi_{a,c} - \varphi_m - V_{OC}
\]

(13)

in which \(\varphi_{a,c} \) and \(\varphi_m \) denote the potentials of the carbon and membrane phases in the catalyst layer, respectively, and \(V_{OC} \) is the reference open-circuit potential of the electrode.

BOUNDARY CONDITIONS

The governing equations for the current PEMFC model have an elliptic, partial differential form. Consequently, boundary conditions are required for all of the boundaries in the computational domain. Due to the conjugated nature of the modeling problem, the gas flow channel surfaces are included within the numerical solution domain and are treated as a fluid with particular properties.
The boundary conditions can be summarized as follows:

1. Gas flow channel inlet

Anode inlet:

\[u = u_{\text{in}}, \quad T = T_{\text{in}}, \quad v = 0, \quad C_{H_2} = C_{H_2,\text{in}}, \quad C_{H_2O} = C_{H_2O,\text{in}} \]

Cathode inlet:

\[u = u_{\text{in}}, \quad T = T_{\text{in}}, \quad v = 0, \quad C_{O_2} = C_{O_2,\text{in}}, \quad C_{N_2} = C_{N_2,\text{in}} \]

2. Gas flow channel outlet

\[\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = \frac{\partial w}{\partial x} = \frac{\partial T}{\partial x} = 0 \]

3. Upper surface

\[u = v = w = 0 \]

4. Lower surface

Cathode gas channel:

\[u = v = w = 0 \]

\[T_{\text{surface}} = 298K \]

\[T_{\text{in}} > T_{\text{w}} \]

RESULTS AND DISCUSSIONS

Figures 2(a) and 2(b) illustrate the distribution of the vertical component of the flow velocity in the straight gas flow channel and the wave-like gas flow channel, respectively, under operating conditions of: (1) a cell potential of 0.6 V, (2) a cathode inlet velocity of 0.1 m/s, and (3) an anode inlet velocity of 0.05 m/s. Figure 3 illustrates the distribution of the axial flow velocity component under the same conditions. Comparing Figures 2(a) and 2(b), it is clear that the periodic wave-like structure of the gas flow channel yields a significant increase in the vertical velocity component of the gas flow. The increased supply of reactant gases to the catalyst layer enhances the efficiency of the catalytic reaction and therefore improves the performance of the PEMFC. Meanwhile, comparing Figures 3(a) and 3(b), it can be seen that the wave-like surface introduces a nozzle-type effect which accelerates the flow in the axial direction in the constricted region of the channel immediately above each wave feature. However, Figure 3(b) also shows that the axial velocity of the reactant gases reduces in the trough regions of the wavy surface. This has the effect of trapping the fuel, thereby increasing its supply to the catalyst layer. Figures 2 and 3 both show that a strong convective force is induced along the reaction surface of the wave-like gas flow channel. This not only increases the supply of the reactant gases to the catalyst layers, but also improves the flow of the reaction byproduct out of the PEMFC and therefore reduces the membrane drowning effect. As a result, the performance of the fuel cell is significantly improved, particularly at higher current densities.

The liquid water saturation field in the gas flow channel and the GDL on the cathode side of the PEMFC at inlet cell temperatures of 323 K, 333 K and 343 K, respectively are as Figures 4(a)–(c). Comparing the three figures, it is observed that the level of liquid water saturation increases slightly with an increasing operating temperature. Furthermore, in every case, it can be seen that the liquid water saturation increases along the length of the channel. As a result, liquid water is formed at the
interface between the membrane and the cathode catalyst layer in the outlet region of the channel. Consequently, the liquid water saturation level in the catalyst layer is higher than that in the GDL. Liquid water is transported from the catalyst layer towards the GDL by capillary action. When the liquid water reaches the interface between the GDL and the flow channel, it is transported toward the channel outlet by the drag force induced by the convective flow of the gas.

Figure 5 presents the variation of the oxygen concentration along the channel in both the wave-like and straight gas flow channels at a cell voltage of 0.6 V and an inlet temperature of 323 K. It can be seen that the oxygen mole fraction decreases along the flow direction as a result of absorption in the catalyst layer. Furthermore, the results confirm that a greater amount of oxygen is consumed in the wave-like channel due to the forced convection effect.

Figures 6(a)–(c) illustrate the temperature contours within the wave-like gas flow channel for inlet temperatures of 323 K, 333 K and 343 K, respectively. The results reveal that irrespective of the inlet temperature, a relatively uniform temperature distribution is obtained within the channel. Hence, it can be inferred that the wave-like surface is instrumental in improving the heat transfer within the channel. In general, the enhanced convective heat transfer performance may be the result of the increased flow interruption caused by the wave-like obstacles in the channel, a reduction in the thermal boundary layer in the region of the channel between neighboring waves, or an increased velocity gradient near the GDL boundary.

In this study, the validity of the numerical model was verified by comparing the predicted results for the polarization characteristics of the PEMFC with the experimental data presented by Wang et al. (2003). Figure 7 illustrates the variation of the cell voltage with the current density for both the wave-like channel and the straight channel. Note that the anode and cathode channels both have an inlet temperature of 323 K. It is clear that a good agreement exists between the numerical results for the straight gas flow channel and the experimental data, and hence the validity of the computational model is confirmed.

Figure 8 compares the polarization curves of the wave-like channel and the straight channel at inlet temperatures of 323K, 333 K and 343K, respectively. It is observed that a good agreement exists between the two sets of results at low to medium current densities. However, at high current densities, the wave-like channel yields an effective increase in both the cell voltage and the power density. The relatively poorer performance of the straight gas flow channel in the high current density region is most reasonably attributed to the lower velocity of the gas fuel supply to the GDL and catalyst layers. From a close inspection, it can be seen that both the cell voltage and the power density increase slightly as the fuel cell temperature increases. An improved PEMFC performance is obtained because a higher temperature results in a greater catalytic activity and a greater capacity for water removal via evaporation. In other words, increasing the temperature reduces the level of flooding within the fuel cell. Moreover, a higher cell temperature increases the membrane conductivity and mass diffusivity, and therefore reduces the mass transport resistance. However, as the flow distance increases, the temperature distribution within the wave-like channel remains relatively uniform, while that within the straight channel falls rapidly. The relatively higher temperature within the wave-like channel enhances the membrane conductivity and accelerates the electrode kinetics. As a result, the electrical performance of the PEMFC is improved.

CONCLUSIONS

This study has utilized a 3-D computational model to compare the fluid flow phenomena within PEMFCs containing a conventional straight gas flow channel or a novel wave-like gas flow channel. The simulations have considered inlet temperatures of 323 K, 333K and 343 K, respectively, and have focused specifically on the influence of the forced convection effect induced in the wave-like channel on the gas flow characteristics, temperature distribution, electrochemical reaction efficiency and electrical performance of the PEMFC. In general, the results have shown that compared to a straight gas flow channel, the wave-like channel provides an improved convective heat transfer performance, a higher gas flow velocity and a more uniform temperature distribution. As a result, the efficiency of the catalytic reaction is greatly enhanced. The improved catalytic reaction results in a higher cell voltage and an improved power density, particularly at higher values of the inlet temperature and current density.

ACKNOWLEDGMENT

This research was supported by the National Science Council of Taiwan under contract No. NSC 96-2221-E-006-043-MY3.

REFERENCES

Table 1 Geometric and physical parameters employed in numerical simulations

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas channel depth</td>
<td>6.3 mm</td>
</tr>
<tr>
<td>Gas channel width</td>
<td>6.5 mm</td>
</tr>
<tr>
<td>Gas channel length</td>
<td>100 mm</td>
</tr>
<tr>
<td>Gas diffusion thickness</td>
<td>6.3 mm</td>
</tr>
<tr>
<td>Catalyst thickness</td>
<td>0.65 mm</td>
</tr>
<tr>
<td>Membrane thickness</td>
<td>0.127 mm</td>
</tr>
<tr>
<td>Porosity of gas diffusion layer</td>
<td>0.4</td>
</tr>
<tr>
<td>Porosity of catalyst layer</td>
<td>0.25</td>
</tr>
<tr>
<td>Permeability of gas diffusion layer</td>
<td>1.56 x 10^-8 m^2</td>
</tr>
<tr>
<td>Permeability of catalyst layer</td>
<td>1.56 x 10^-8 m^2</td>
</tr>
<tr>
<td>Permeability of membrane layer</td>
<td>1.30 x 10^-8 m^2</td>
</tr>
<tr>
<td>Tonnality of gas diffusion layer</td>
<td>1.5</td>
</tr>
<tr>
<td>Tonnality of catalyst layer</td>
<td>1.5</td>
</tr>
<tr>
<td>Electrical conductivity of gas diffusion layer</td>
<td>33.5 S/cm</td>
</tr>
<tr>
<td>Electrical conductivity of catalyst layer</td>
<td>33.5 S/cm</td>
</tr>
<tr>
<td>Substrate material</td>
<td>Steel304</td>
</tr>
<tr>
<td>Open circuit potential</td>
<td>1.0 mV</td>
</tr>
<tr>
<td>Anode fuel</td>
<td>H2 (98.3%), O2 (0.35%)</td>
</tr>
<tr>
<td>Cathode fuel</td>
<td>O2 (21.7%), H2 (77.2%), CO (1%)</td>
</tr>
<tr>
<td>Relative humidity of the model</td>
<td>106 %</td>
</tr>
</tbody>
</table>

Figure 1. Schematic representation of PEMFC.

(a). Straight geometry.

(b). Wave-like geometry.

Figure 2. Velocity field in y-direction of gas flow channels.

(a). Straight geometry.
(b). Wave-like geometry.
Figure 3. Velocity field in x-direction of gas flow channels.

(a) Wave-like form channel T=323 K

(b) Wave-like form channel T=333 K

(c) Wave-like form channel T=343 K

Figure 4. Liquid water saturation field in cathode gas channel and diffusion layer at cell voltage of 0.6 V and inlet temperatures of (a) 323 K, (b) 333 K, and (c) 343K.

Figure 5. Variation of oxygen mole fraction in cathode catalyst layer at cell voltage of 0.6 V.

(a) Wave-like form channel T=323 K

(b) Wave-like form channel T=333 K

Figure 6. Temperature contours in gas flow channel at cell voltage of 0.6 V and inlet temperatures of (a) 323 K, (b) 333 K, and (c) 343K.

Figure 7. Comparison of numerical predictions and experimental results [12] for variation of cell voltage with current density.

Figure 8. Polarization curves as function of fuel cell temperature.