Total Energy Control System for Helicopter Flight/Propulsion
Integrated Controller Design

Sheng-Wen Chen
National Cheng Kung University, Tainan City 701, Taiwan, Republic of China
Pang-Chia Chen
Kao Yuan University, Kaohsiung County 821, Taiwan, Republic of China
Ciann-Dong Yang
National Cheng Kung University, Tainan City 701, Taiwan, Republic of China
Yaug-Fea Jeng
Chienkuo Technology University, Changhua City 500, Taiwan, Republic of China

DOI: 10.2514/1.26670

The purpose of this paper is to design a helicopter flight control system using a total energy control system approach. A total energy control system design uses change rates of the sum and of the difference between kinetic and potential energies as control indices. This paper documents the first known application of a total energy control system design for helicopter control. Energy change rate and energy distribution rate are manipulated to provide automatic tracking of desired altitude, velocity, and flight-path-angle profiles for a Westland Lynx helicopter. A linearized helicopter dynamic model is obtained in the total energy control system framework, and control laws are synthesized using H_{∞} control theory and the method of linear matrix inequalities. Numerical simulation is used to verify the effectiveness of the proposed total energy control system helicopter flight control laws. The total energy control system reduces engine fuel consumption by alleviating unnecessary fluctuations in energy change and distribution rates when tracking flight path and propulsion commands.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>change rate of the sum of kinetic energy and potential energy</td>
</tr>
<tr>
<td>L</td>
<td>change rate of the difference between the kinetic energy and potential energy</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
</tr>
<tr>
<td>H, h</td>
<td>altitude and altitude perturbation, respectively</td>
</tr>
<tr>
<td>I_{xx}, I_{yy}, I_{zz}</td>
<td>moment of inertia of the helicopter</td>
</tr>
<tr>
<td>L, M, N</td>
<td>aerodynamic moments about the center of gravity (body-axis coordinate system)</td>
</tr>
<tr>
<td>L_{F}, M_{F}, N_{F}</td>
<td>fuselage aerodynamic moments about the center of gravity (body-axis coordinate system)</td>
</tr>
<tr>
<td>I_{tx}, I_{ty}, I_{tz}, I_{xx}, I_{yy}, I_{zz}</td>
<td>moment of inertia of the helicopter</td>
</tr>
<tr>
<td>L_{R}, M_{R}, N_{R}</td>
<td>main rotor aerodynamic moments about the center of gravity (body-axis coordinate system)</td>
</tr>
<tr>
<td>L_{T}, M_{T}, N_{T}</td>
<td>tail rotor moments about the center of gravity (body-axis coordinate system)</td>
</tr>
<tr>
<td>L_{T}, M_{T}, N_{T}</td>
<td>tail rotor moments about the center of gravity (body-axis coordinate system)</td>
</tr>
<tr>
<td>X, Y, Z</td>
<td>external aerodynamic forces acting along the x, y, z axes (body-axis coordinate system)</td>
</tr>
<tr>
<td>X_{F}, Y_{F}, Z_{F}</td>
<td>components of X, Y, Z from the fuselage (body-axis coordinate system)</td>
</tr>
<tr>
<td>X_{in}, Y_{in}, Z_{in}</td>
<td>components of X, Y, Z from the fin (body-axis coordinate system)</td>
</tr>
<tr>
<td>X_{R}, Y_{R}, Z_{R}</td>
<td>components of X, Y, Z from the main rotor (body-axis coordinate system)</td>
</tr>
<tr>
<td>X_{T}, Y_{T}, Z_{T}</td>
<td>components of X, Y, Z from the tail rotor (body-axis coordinate system)</td>
</tr>
<tr>
<td>X_{ip}, Y_{ip}, Z_{ip}</td>
<td>components of X, Y, Z from the tail plane (body-axis coordinate system)</td>
</tr>
<tr>
<td>β_{0}, β_{1c}, β_{1s}</td>
<td>rotor blade coning, longitudinal and lateral flapping angles</td>
</tr>
<tr>
<td>γ</td>
<td>flight path angle</td>
</tr>
<tr>
<td>θ_{i}</td>
<td>elevator angle command</td>
</tr>
<tr>
<td>θ_{m}</td>
<td>main rotor collective pitch</td>
</tr>
<tr>
<td>θ_{tr}</td>
<td>tail rotor collective pitch</td>
</tr>
<tr>
<td>θ_{c}</td>
<td>lateral cyclic pitch</td>
</tr>
<tr>
<td>ϕ, θ, ψ</td>
<td>Euler angles (fuselage attitude angles)</td>
</tr>
<tr>
<td>Ω</td>
<td>main rotor speed</td>
</tr>
</tbody>
</table>

Received 20 July 2006; revised received 18 January 2007; accepted for publication 25 January 2007. Copyright © 2007 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 0731-5090/07 $10.00 in correspondence with the CCC.

*Graduate Student, Department of Aeronautics and Astronautics, 1 Ta-Hsueh Road.
 †Associate Professor, Department of Electrical Engineering, 1821 Chung-Shan Road, Lu-Chu Hsiang, Member AIAA.
 ‡Professor, Department of Aeronautics and Astronautics, 1 Ta-Hsueh Road; cdyang@mail.ncku.edu.tw (Corresponding Author).
 §Associate Professor, Department of Automation Engineering, 1 Chieh-Shou North Road.

I. Introduction

In CONVENTIONAL flight control system design, the autopilot system and the autothrottle system were usually considered separately: the autothrottle unit was mainly used to adjust the engine throttle valve to achieve desired flight speed, and the autopilot unit was...
designed to regulate the control surfaces for altitude maneuver. However, interaction between autopilot and autothrottle systems actually exists due to the dynamic coupling between speed and altitude. The separate design approach of the two control modes leads to the drawback that controlling objectives for one control mode will disturb the objectives for another control mode. For example, if the autopilot command exceeds the drivable propulsion limit of the engine output, then the resulting speed will deviate from the autothrottle set point. The resulting unnecessary maneuver of the aircraft will increase engine fuel consumption and even cause stall or overspeed. To prevent these circumstances, many integrated flight and propulsion control designs [1,2] were proposed. A total energy control system (TECS), as one of the integrated flight and propulsion control approaches, is based on the transfer between the kinetic energy and potential energy, in which the change rates of the sum and of the difference between the kinetic energy and potential energy are used as control indices. The core idea of a TECS design is to achieve required altitude and speed by using throttle valve to control the sum of energies and by using elevator angle to control the distribution between the kinetic energy and potential energies.

In Fig. 1, the integrated flight and propulsion control system for fixed-wing aircraft in the framework of a TECS provides coordination between the throttle valve command and the elevator angle command such that the undesired dynamic coupling can be effectively reduced. In addition, the mechanism of a TECS has found applications in guidance [3–5] and control [6–12] for various types of fixed-wing aircraft. Lambregts [6,7] first gave the theoretic study and set up the structure of the TECS. Warren [8] proposed that the transferring of the cruise states could be accomplished in two ways: One is by using the control laws of the energy hold/altitude hold to manage the propulsion and vertical lift force to maintain the required altitude and speed at a certain cruise point. The other way is via the control law of energy obtaining, in which the flight path angle is used to coordinate the transfer of altitude and speed to arrive at the equilibrium point. Voth and Lyt [9] employed a constrained parameter optimization approach for the tradeoffs between multiple design objectives and constraints under the TECS framework. Faliero and Lambregts [10] designed a proportional–integral feedback control law by using eigenstructure assignment based on the existing TECS structure for a linear model of the longitudinal dynamics of an aerospace technologies demonstrator (ATD) plane. It was shown that the improvement on the decoupling of the airplane flight/propulsion outputs could be achieved. Griseold [11] proposed a similar total heading control system (THCS) instead of the standard TECS design for longitudinal flight control. The dynamic coupling between the flight path angle and velocity was investigated by Ganguli and Balas [12] with an H_{∞} control approach.

Though the TECS approach was developed for years for controlling fixed-wing aircraft [6–12], no previous work on the application of TECS to helicopter flight control is found. Because the coupling effects between the longitudinal and lateral dynamics of the helicopter are prominent, we need to consider the integrated longitudinal and lateral dynamics [13,14] in the helicopter TECS design, instead of simply considering the longitudinal dynamics as in the design for a fixed-wing aircraft.

Upon deriving the TECS-based output-feedback helicopter control, the various design specifications are addressed in terms of H_{∞} criteria to achieve performance merits such as robustness against modeling uncertainty, bandwidth shaping of actuator output, and high fidelity of command tracking. The known literatures regarding the H_{∞} technique for helicopter control include the designs for the UH-60A Black Hawk model [15] and the Yamaha R-50 robotic helicopter [16]. In this paper, the TECS-based helicopter controller satisfying the given design specification is then constructed by using the linear matrix inequality (LMI) method, which possesses the merit of numerical reliability and is especially suitable for a multiobjective controller design [17–21]. The resulting TECS design can achieve satisfactory tracking performance for the given trajectory commands by alleviating the unnecessary fluctuation of the energy change rate \dot{E} and energy distribution rate \dot{L} in such a way that the energy consumption for an engine can be reduced effectively.

The remainder of this paper is organized as follows. Section II introduces the derivation of the nonlinear and linearized model for the helicopter dynamics. Section III describes the theoretical aspect of a TECS and investigates its application to helicopter flight control. Section IV derives the output-feedback controller design based on H_{∞} control theory and exploits the LMI method to construct the controller. Section V validates the derived TECS controller by the time-response simulations, and finally, Sec. VI gives the conclusion and future perspective.

II. Linearized Helicopter Model

For the purpose of controller design, we need to derive a suitable linearized dynamic model of the helicopter. The helicopter consists of a couple of interacting subsystems. For each of the subsystems, the states that describe its dynamic behavior are as follows:

1. For the main rotor, β_1, β_2, and β_3 denote rotor blade coning and longitudinal and lateral flapping angles.
2. For the fuselage, u, v, w, p, q, r, ψ, θ, and ϕ denote velocities, angular velocities, and Euler angles.
3. For the engine, Ω and Q_e denote the main rotor speed and engine torque.
4. For the inflow, λ_0 and λ_{in} denote inflows of the main rotor and tail rotor.
5. For control, θ_0, θ_1, θ_2, and θ_{in} denote main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and tail rotor collective pitch.

The dynamic model of a helicopter describes a six-degree-of-freedom rigid-body motion, including the following dynamics:

For force equations,

\begin{align}
\dot{u} &= rv - qw + \frac{X}{M_a} - g \sin \theta \\
\dot{v} &= pw - ru + \frac{Y}{M_a} + g \sin \phi \cos \theta \\
\dot{w} &= qu - pv + \frac{Z}{M_a} + g \cos \phi \cos \theta
\end{align}

(1a) (1b) (1c)

for moment equations,

\begin{align}
\dot{p} &= (c_3 \dot{r} + c_4 \dot{p})q + c_7 \dot{L} + c_4 \dot{N} \\
\dot{q} &= c_5 \dot{p}r - c_6 \dot{r}^2 + c_7 \dot{M} \\
\dot{r} &= (c_6 \dot{p} - c_7 \dot{r})q + c_7 \dot{L} + c_0 \dot{N}
\end{align}

(2a) (2b) (2c)

and for attitude equations,

\begin{align}
\dot{\psi} &= p + \tan \theta (q \sin \phi + r \cos \phi) \\
\dot{\theta} &= q \cos \phi - r \sin \phi \\
\dot{\phi} &= \dot{p} + \dot{\psi} (q \sin \phi + r \cos \phi)
\end{align}

(3a) (3b)
\[\dot{\psi} = (q \sin \phi + r \cos \phi) / \cos \theta \]

(3c)

The coefficients in the moment equations are defined as follows:

\[
c_1 = [(I_{yy} - I_{zz})I_{zz} - I_{yy}^2] / \Gamma, \quad c_2 = (I_{xx} - I_{yy} + I_{zz})I_{zz} / \Gamma, \quad c_3 = I_{zz} / \Gamma, \quad c_4 = I_{zz} / \Gamma, \quad c_5 = (I_{zz} - I_{xx}) / I_{yy}, \quad c_6 = I_{zz} / I_{yy}
\]

\[
c_7 = 1 / I_{yy}, \quad c_8 = [(I_{xx} - I_{yy})I_{xx} + I_{yy}^2] / \Gamma, \quad c_9 = I_{xx} / \Gamma, \quad \Gamma = I_{xx}I_{zz} - I_{yy}^2
\]

(4)

The aerodynamic forces, \(X\), \(Y\), and \(Z\) and aerodynamic moments \(L\), \(M\), and \(N\) are composed of contributions from the five individual subsystems and are represented as follows:

\[
X = X_R + X_T + X_P + X_Q + X_f \quad (5a)
\]

\[
Y = Y_R + Y_T + Y_P + Y_Q + Y_f \quad (5b)
\]

\[
Z = Z_R + Z_T + Z_P + Z_Q + Z_f \quad (5c)
\]

\[
L = L_R + L_T + L_P + L_Q + L_f \quad (5d)
\]

\[
M = M_R + M_T + M_P + M_Q + M_f \quad (5e)
\]

\[
N = N_R + N_T + N_P + N_Q + N_f \quad (5f)
\]

where the subscript \(R\) denotes the main rotor, \(T\) is the tail rotor; \(F\) is the fuselage; \(T_p\) is the horizontal tail plane, and \(f_n\) is the vertical fin. By the dynamic analysis for each subsystem [13], we can derive the expressions for every component in Eqs. (5), which are then substituted into Eqs. (1–3) to obtain the nonlinear dynamic equations of motion for the helicopter. The subsequent linearization about a specific flight condition yields

\[
\dot{x} = Ax + Bu
\]

(6)

where \(x = [u \quad v \quad w \quad p \quad q \quad r \quad \phi \quad \theta] \) is the state vector, \(u = [\theta_0 \quad \theta_{1x} \quad \theta_{1e} \quad \theta_{0e}] \) is the control vector, \(A\) is the system matrix formed by the stability derivatives, and \(B\) is the input matrix formed by the control derivatives.

In this paper, the configuration data of the Westland Lynx helicopter are used to generate the numerical values of the matrices \(A\) and \(B\). At the forward velocity \(u = 50\) m/s, the equilibrium trim condition is computed iteratively, as follows:

\[
[\begin{array}{cccccccc}
 u & v & w & p & q & r & \phi & \theta \\
 49.99 & -0.65 & 0 & 0 & -1.57 & -0.74 & 34.80 & 12.878 & 12.78 & -2.40 & 0.75 & 2.77 & 0 & 0 & -9.8092
\end{array}]
\]

(7)

At the specified trim condition, we can compute the aerodynamic forces, aerodynamic moments, and their derivatives to determine the elements of the matrices \(A\) and \(B\) as

\[
A = \begin{bmatrix}
-0.0352 & 0.0012 & 0.0325 & -0.2392 & 1.1701 & 0 & 0 & -9.8092 \\
0.0047 & -0.0817 & -0.0175 & -1.2591 & -0.2223 & -49.4850 & 9.8055 & -0.0035 \\
0.0068 & -0.0099 & -0.7845 & -0.5728 & 49.8289 & -0.0002 & 0.2689 & 0.1269 \\
0.0013 & -0.1742 & 0.0437 & -10.4135 & -2.0499 & -0.0616 & 0 & 0 \\
0.0224 & 0.0015 & -0.0341 & 0.4800 & -2.4287 & 0.0008 & 0 & 0 \\
-0.0199 & 0.1495 & -0.0208 & -1.7324 & -0.1674 & -0.1376 & 0 & 0 \\
0 & 0 & 0 & 1.0000 & 0.0004 & -0.0129 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.99946 & 0.0274 & 0 & 0
\end{bmatrix}
\]

(8a)

\[
B = \begin{bmatrix}
0.8543 & -8.5308 & 1.5321 & 0 \\
-1.5340 & -1.8096 & -10.1354 & 6.2898 \\
-121.0973 & -38.4154 & 0.1071 & 0 \\
11.8998 & -25.6649 & -155.2281 & -1.4233 \\
13.7750 & 28.6663 & -5.2602 & -0.0574 \\
11.1379 & -6.2144 & -26.9896 & -17.2164 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

(8b)

It should be noted that in this paper, the rotor angular velocity \(\Omega\) and the torque \(Q_c\) are kept in their trim values, as listed in Eq. (7); no attempt was made to control \(\Omega\) and \(Q_c\). The extension of the present work to include \(\Omega\) and \(Q_c\) as controlled variables, however, is a more realistic approach to integrated flight/ propulsion control, which will be investigated in future research.
III. Helicopter Flight Control in the TECS Framework

In the preceding section, we derived the linearized model of the helicopter dynamics, as shown in Eqs. (8a) and (8b). In this section, the necessary modification of this dynamic equation to cope with the TECS framework will be addressed. The helicopter energy states to be controlled in TECS are defined as the sum E_T and difference L_T of the kinetic energy $(1/2)mv_T^2$ and the potential energy mgH per unit weight, that is,

$$
E_T = \frac{1}{mg} \left(\frac{1}{2} m v_T^2 + mgH \right) = \frac{V_T^2}{2g} + H, \quad L_T = \frac{1}{mg} \left(\frac{1}{2} m v_T^2 - mgH \right) = \frac{V_T^2}{2g} - H
$$

(9)

By taking time derivatives, we then have

$$
\dot{E} := \frac{\dot{E}_T}{V_T} \frac{V_T}{g} + \dot{\dot{H}} = \frac{\dot{V}_T}{V_T} + \gamma, \quad \dot{L} := \frac{\dot{L}_T}{V_T} \frac{V_T}{g} - \dot{\dot{H}} = \frac{\dot{V}_T}{V_T} - \gamma
$$

(10)

where $\gamma = \dot{H}/V_T$ is the flight path angle. The next step is to express \dot{E} and \dot{L} (or equivalently, \dot{V}_T and \dot{H}) in terms of the state variables defined in Eq. (7). Assuming small perturbation with respect to the trim condition and starting with the relations $h = -(\cos \Theta_0)z + Z_0(\sin \Theta_0)\theta$ and $V_T = V_{T0} + \dot{v}_T$ with $\dot{v}_T = (U_0/V_{T0})u + (W_0/V_{T0})w$, we can obtain the following expressions:

$$
\dot{h} = (U_0 \cos \Theta_0 + W_0 \sin \Theta_0 \cos \Theta_0 \dot{\Theta} - \cos^2 \Theta_0 \Theta + \Theta \sin \Theta_0 \sin \Theta_0)u
$$

(11)

$$
\dot{V}_T = V_{T0} + \dot{v}_T = \frac{U_0}{V_{T0}} \dot{u} + \frac{W_0}{V_{T0}} \dot{w}
$$

(12)

In the preceding expressions, we used the convention that capital letters with subscript 0 represent trim values and lowercase letters represent perturbations. By appending the preceding TECS-related variables into the state equations, as mentioned in Eqs. (12), we obtain the following augmented linearized model:

$$
\begin{bmatrix}
\dot{u} \\
\dot{v} \\
\dot{w} \\
\dot{p} \\
\dot{q} \\
\dot{r} \\
\dot{\phi} \\
\dot{\theta} \\
\dot{z}
\end{bmatrix} =
\begin{bmatrix}
-0.0352 & 0.0012 & 0.0325 & -0.2392 & 1.1701 & 0 & 0 & -9.8092 & 0 \\
0.0047 & -0.0817 & -0.0175 & -1.2591 & -0.2234 & -49.8505 & 9.8055 & -0.0035 & 0 \\
-0.0068 & -0.0099 & -0.7845 & -0.5728 & 49.8289 & -0.0002 & 0.2689 & 0.1269 & 0 \\
0.0013 & -0.1742 & 0.0437 & -10.4135 & -2.4099 & -0.0616 & 0 & 0 & 0 \\
0.0224 & 0.0015 & -0.0341 & 0.4800 & -2.4287 & 0.0008 & 0 & 0 & 0 \\
-0.0199 & 0.1495 & -0.0208 & -1.7324 & -0.1674 & -1.3769 & 0 & 0 & 0 \\
0 & 0 & 0 & 1.0000 & 0.0002 & -0.0129 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.9996 & 0.0274 & 0 & 0 & 0 \\
0.0129 & 0 & 0.9999 & 0 & 0 & 0 & 0 & -50 & 0
\end{bmatrix}
\begin{bmatrix}
u \\
v \\
w \\
p \\
q \\
r \\
\phi \\
\theta \\
z
\end{bmatrix}
$$

(13a)

$$
\begin{bmatrix}
\dot{\theta}_0 \\
\dot{r}_0 \\
\dot{\theta}_0 \\
\dot{\theta}_0 \\
\dot{\theta}_0 \\
\dot{\theta}_0 \\
\dot{\theta}_0 \\
\dot{\theta}_0 \\
\dot{\theta}_0
\end{bmatrix} =
\begin{bmatrix}
0.8543 & -8.5348 & 1.5321 & 0 \\
-1.5430 & -1.8096 & -10.1354 & 6.2898 \\
-121.0973 & -38.4154 & 0.1071 & 0 \\
11.8998 & -25.6649 & -155.2281 & -1.4233 \\
13.7750 & 28.6663 & -5.2602 & -0.0574 \\
11.1379 & -6.2144 & -26.9896 & -17.2164 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\theta_0 \\
\theta_0
\end{bmatrix}
$$

(13b)

which is denoted by the abbreviation as

$$
G: \begin{cases}
\dot{x}_s &= A_s x_s + B_s u \\
y_s &= C_s x_s + D_s u
\end{cases}
$$

(14)

where $y_s = [\dot{E} \quad \dot{L} \quad v_T \quad h]^T$ is the augmented output measurement. As for the control input u for the helicopter, propulsion is controlled by the
main rotor collective pitch, and attitude is adjusted by the cyclic pitches. The overall control input of the helicopter is $u = (\theta_0, \theta_{1r}, \theta_{1t}, \theta_{2t})^T$, with the tail rotor collective pitch used to produce a counterracting torque of the main rotor.

The closed-loop control structure of the TECS design is illustrated in Fig. 2. Because the helicopter maneuver is based on the transfer between the kinetic energy and potential energy under the TECS framework, the objective of this control system design is to make the output response $(E, L)^T$ track the command input $(E_c, L_c)^T$, which, according to Eq. (10), can be written as

$$
\dot{E}_c = \frac{\dot{v}_r}{g} + \gamma_c, \quad \dot{L}_c = \frac{\dot{v}_r}{g} - \gamma_c
$$

(15)

IV. Output-Feedback Flight Controller Design Using the LMI Method

Referring to Fig. 2, the commands of the energy change rate \dot{E}_c and the energy distribution rate L_c are considered as the external inputs to the controlled system. In Fig. 3, an internal control loop is designed for tracking the energy variables \dot{E} and L. Letting $r = [\dot{E}_c, L_c]^T$ and $\hat{y} = [\dot{E}, \dot{L}]^T$, the input signal to the controller, denoted by \tilde{y}, can be expressed by

$$
\tilde{y} = \begin{bmatrix} \dot{E}_c \\ \dot{L}_c \end{bmatrix} = \begin{bmatrix} \dot{E} - \dot{E}_c \\ \dot{L} - \dot{L}_c \end{bmatrix} = \begin{bmatrix} r - \dot{y} \\ v_T \\ \gamma \end{bmatrix} = \begin{bmatrix} v_T \\ h \end{bmatrix}
$$

+ \begin{bmatrix} D_y \end{bmatrix} r + \begin{bmatrix} D_p \end{bmatrix} \psi
$$

with the coefficient matrices given by

$$
\begin{align*}
D_y &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \\
D_p &= \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\end{align*}
$$

(16) (17)

Figure 4 details the mechanism generating the energy command $(\dot{E}_c, \dot{L}_c)^T$ from the altitude command $h_i(t)$ and velocity command $v_T(t)$. The altitude deviation command $h_i(t)$ is compared with the actual altitude to obtain the difference signal $h_i(t) - h(t)$ and then normalized by the parameter k_h to produce the vertical velocity command $\dot{h}_i(t)$, which is further divided by the velocity v_T to generate the flight-path-angle command $\gamma_i(t)$. In addition to the preceding altitude feedback loop, a direct flight-path-angle command $\gamma_i(t)$ can also be applied to form a feedforward loop of altitude control, as shown in Fig. 4. On the other hand, the command of $\dot{v}_r(t)/g$ is produced by normalizing the velocity difference $v_T(t) - v_T$ with the parameter k_v/g.

The synthesis of the TECS flight controller from the signal \tilde{y} is based on the H_{∞} control theory to satisfy the desired robustness performance. Some appropriately chosen weighting functions are used to address the desired robustness and performance specifications, as shown in Fig. 5. The selection of the weighting function W_s is related to the boundary of system perturbations, expressed in the form of maximum multiplicative uncertainties that can be stabilized by the same controller. Let $P_{50}(s)$ denote the nominal plant derived in Eqs. (8) with a forward speed of 50 m/s and let $P_i(s)$ denote a deviated plant. The system multiplicative uncertainty ΔP is defined as $P_i(s) - P_{50}(s) = P_{50}(s)\Delta P$, and the weighting function W_s is employed to envelop $P_i - P_{50}$, such that

$$
\tilde{\Delta}(P_i - P_{50}) = \tilde{\Delta}(P_{50}(s)\Delta P) \leq \tilde{\Delta}(P_{50}W_s)
$$

(18)

where $\tilde{\Delta}(\cdot)$ denotes the maximum singular value. By using the linearized model $P_{50}(s)$ as the nominal plant, Fig. 5 depicts the
with the property that the maximum singular value of P_{xy}, W_3 can cover the range of the measured uncertainties ΔP is found to be

$$ W_3 = \frac{4.08(s + 1)}{s + 4.08} \times I_{4 \times 4} \quad (19) $$

The weighting function W_2 is selected to regulate control input energy. We choose W_2 as

$$ W_2 = \frac{s + 10}{s + 100} \times I_{4 \times 4} \quad (20) $$

which is a high-pass filter with a cutoff frequency at 10 rad/s to limit the bandwidth of the actuator output. The growing magnitude of W_2 in the high-frequency range restrains the need of rapid response of the actuator. The choice of the weighting function W_1 affects command-tracking performance. In general, W_1 approximates a simple low-pass filter in the form of $k(1 + s/a)/s$. For the present command-tracking requirement, W_1 is chosen as

$$ W_1 = \frac{0.015s + 0.45}{3s + 0.01} \times I_{4 \times 4} \quad (21) $$

Systematic searching methods such as Taguchi’s matrix experiments and genetic algorithm were developed [14,22] to determine the preceding weighting functions to satisfy the helicopter handling-qualities specifications (ADS-33) [23].

By introducing state-space representations of the chosen weighting functions, the input–output relationship of each weighting function can be written as follows:

$$ W_1: \begin{cases} \dot{x}_1 = A_{w_1}x_1 + B_{w_1}D_p r + B_{w_2}DP_x y_2 + A_{w_1}D_p D_{u_1}u \\ \dot{z}_1 = C_{w_1}x_1 + D_{w_1}D_{u_1}r + D_{w_2}DP_x y_2 + C_{w_1}D_p D_{u_1}u \end{cases} \quad (22a) $$

$$ W_2: \begin{cases} \dot{x}_2 = A_{w_2}x_2 + B_{w_2}u \\ \dot{z}_2 = C_{w_2}x_2 + D_{w_2}u \end{cases} \quad (22b) $$

$$ W_3: \begin{cases} \dot{x}_3 = A_{w_3}x_3 + B_{w_3}C_{cl} x_4 + B_{w_3}D_{u_3}u \\ \dot{z}_3 = C_{w_3}x_3 + D_{w_3}C_{cl} x_4 + D_{w_3}D_{u_3}u \end{cases} \quad (22c) $$

The integration of the helicopter dynamics in Eq. (14) with the weighting dynamics in Eqs. (22) and the measurement \vec{y} in Eq. (16) leads to the following augmented system:

$$ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{z}_1 \\ \dot{z}_2 \\ \dot{z}_3 \end{bmatrix} = \begin{bmatrix} A_x \\ B_{u_1}D_p C_x + A_{u_1} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} x + \begin{bmatrix} B_x \\ B_{u_1}D_p D_{u_1} \\ B_{u_2} \\ B_{u_2}D_{u_1} \\ 0 \\ 0 \end{bmatrix} u + \begin{bmatrix} x_f \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} D_{u_1}D_p C_x + A_{u_1} \\ 0 \\ 0 \end{bmatrix} y \quad (23a) $$

$$ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{z}_1 \\ \dot{z}_2 \\ \dot{z}_3 \end{bmatrix} = \begin{bmatrix} D_{u_1}D_p C_x + A_{u_1} \\ 0 \\ C_{u_1} \\ 0 \\ 0 \end{bmatrix} x + \begin{bmatrix} D_{u_1}D_p D_{u_1} \\ D_{u_2} \\ 0 \\ 0 \end{bmatrix} u \quad (23b) $$

The control u to be designed has the proper type of structure:

$$ \begin{cases} \dot{\tilde{x}}_1 = A_{\tilde{x}_1} \tilde{x}_1 + B_{\tilde{x}_1} \tilde{y} \\ \dot{\tilde{u}} = C_{\tilde{u}} \tilde{x}_1 + D_{\tilde{u}} \tilde{y} \end{cases} \quad (25) $$

where the coefficient matrices $A_{\tilde{x}_1}, B_{\tilde{x}_1}, C_{\tilde{u}},$ and $D_{\tilde{u}}$ are to be determined by the LMI formulation. Substituting the variable y from Eq. (24)) into the control u in Eq. (25), we have

$$ \begin{bmatrix} \dot{\tilde{x}}_1 \\ \dot{\tilde{u}} \end{bmatrix} = \begin{bmatrix} \tilde{C}_1 \tilde{x}_1 + \tilde{D}_1 C_{cl} \tilde{x}_4 + \tilde{D}_1 D_{u_3} \tilde{r} \end{bmatrix} \quad (26) $$

$$ \tilde{C}_1 := (I - D_{\tilde{u}} D_{\tilde{u}})^{-1} C_{cl}, \quad \tilde{D}_1 := (I - D_{\tilde{u}} D_{\tilde{u}})^{-1} D_{\tilde{u}} \quad (27) $$

Further substitution of the preceding u into Eqs. (24) and (25) yields the closed-loop system:

$$ \begin{cases} \dot{\tilde{x}}_1 = A_{\tilde{x}_1} \tilde{x}_1 + B_{\tilde{x}_1} \tilde{r} \\ \dot{\tilde{z}} = C_{\tilde{z}} \tilde{x}_1 + D_{\tilde{z}} \tilde{r} \end{cases} \quad (28) $$

where the closed-loop matrices in the preceding state-space representation are obtained as

$$ A_{\tilde{cl}} := \begin{bmatrix} A + B D_{\tilde{u}} C_{cl} & B C_{\tilde{u}} \\ B_1 C_{cl} + B_2 D_{\tilde{z}} D_{\tilde{y}} C_{cl} & A - B_1 D_{\tilde{z}} C_{cl} \end{bmatrix}, \quad B_{\tilde{cl}} := \begin{bmatrix} B_1 + B_2 D_{\tilde{z}} D_{\tilde{y}} \\ B_2 + B_2 D_{\tilde{z}} D_{\tilde{y}} \end{bmatrix} \quad (29a) $$

$$ C_{\tilde{cl}} := \begin{bmatrix} C_{\tilde{cl}} + D_{\tilde{z}} D_{\tilde{u}} D_{\tilde{y}} C_{\tilde{cl}} \\ D_{\tilde{cl}} + D_{\tilde{z}} D_{\tilde{u}} D_{\tilde{y}} \end{bmatrix}, \quad D_{\tilde{cl}} := \begin{bmatrix} D_{\tilde{cl}} + D_{\tilde{z}} D_{\tilde{u}} D_{\tilde{y}} \end{bmatrix} \quad (29b) $$

H_∞ control theory assures robustness to system modeling uncertainty while meeting performance specifications, such as closed-loop bandwidth, that are defined in the frequency domain. The achievement of H_∞ performance for a certain closed-loop system can be addressed by the following LMI formulation. For a designated performance level $\lambda > 0$, the closed-loop system (28) is stable and satisfies the performance constraint on the transfer matrix $\|T_{zr}\|_{\infty} \leq \lambda$, if and only if there exists a positive definite matrix $P = P^T > 0$, such that the following LMI condition holds:

$$ \begin{bmatrix} A_{\tilde{cl}}^T P + P A_{\tilde{cl}} & B_{\tilde{cl}}^T P^T + \lambda I & C_{\tilde{cl}}^T \\ B_{\tilde{cl}} P^T & -\lambda I & D_{\tilde{cl}}^T \\ C_{\tilde{cl}} & D_{\tilde{cl}} & -\lambda I \end{bmatrix} < 0 \quad (30) $$

The value of $1/\lambda$ can be conceived of as a measure of gain-phase margin, and the minimum allowable λ gives an indication of the maximum achievable stability margin. Let the matrices P and P^{-1} be partitioned as

$$ P = \begin{bmatrix} Y & N \\ N^T & V \end{bmatrix}, \quad P^{-1} = \begin{bmatrix} X & M \\ M^T & U \end{bmatrix} $$

where the dimension of these matrix variables conforms to the state $x_{\tilde{cl}}$ of the closed-loop system. Defining two new matrix variables
\[\varphi_1 = \begin{bmatrix} X & I \\ M^T & 0 \end{bmatrix}, \quad \varphi_2 = \begin{bmatrix} I & Y \\ 0 & N^T \end{bmatrix}\]

giving us the relationship
\[P\varphi_1 = \varphi_2, \quad \varphi_1^TP\varphi_1 = \varphi_1^TP\varphi_2 = \begin{bmatrix} X & I \\ I & Y \end{bmatrix} > 0 \quad (31)\]

By pre- and postmultiplying the block diagonal matrices \text{diag}(\varphi_1^T, I, I) and \text{diag}(\varphi_1, I, I) in the matrix inequality (30), we obtain
\[\begin{bmatrix} J_f^T + J_d & J_b & J_c \\ J_f & -\lambda I & J_d \\ J_f^T & J_f^T - \lambda I \end{bmatrix} < 0 \quad (32)\]

wherein the matrix variables are defined as
\[J_a = \begin{bmatrix} AX + BC_{k,\lambda} & A + BD_{k,\lambda}C_{\gamma} \\ A_{\lambda} & YA + B_{\lambda}C_{\gamma} \end{bmatrix}, \quad J_b = \begin{bmatrix} B_{\lambda} + BD_{k,\lambda}D_{s,\lambda} \\ YB_{\lambda} + B_{\lambda}D_{s,\lambda} \end{bmatrix}\]

\[J_c = \begin{bmatrix} XC_{\lambda}^T + C_{\lambda}^T D_{s,\lambda}^T \end{bmatrix}, \quad J_d = [D_{s,\lambda}^T + D_{m,\lambda}^T D_{s,\lambda}^T] \quad (34)\]

and the following new controller parameters are introduced:
\[D_{k,\lambda} := \tilde{D}_{k,\lambda}, \quad C_{k,\lambda} := D_{k,\lambda}C_{\lambda} + \tilde{C}_{k,\lambda}M^T\]

\[B_{\lambda} := YB_{\lambda}D_{k,\lambda} + NB_{\lambda}(I + D_{s,\lambda}D_{m,\lambda})\]

\[A_{\lambda} := YAX + NB_{\lambda}C_{\lambda}X + NA_{\lambda}M + (YB + NB_{\lambda}D_{s,\lambda})C_{k,\lambda}\]

We can find that the matrix inequality (32) is indeed an LMI condition in terms of the matrix variables \(X, Y, A_{\lambda}, B_{\lambda}, C_{\lambda}, \) and \(D_{k,\lambda}\), which can be solved numerically by using standard LMI algorithms. For example, in the MATLAB [24] LMI Toolbox environment, we can try to find a set of feasible solutions under a given performance level \(\lambda\) or to find an optimal solution minimizing the performance level \(\lambda\). Once the matrix variables \(X, Y, A_{\lambda}, B_{\lambda}, C_{\lambda}, \) and \(D_{k,\lambda}\) are solved, the invertible square matrices \(M\) and \(N\) can be computed by a singular value decomposition algorithm. Then, we can solve for \(A_k, B_k, C_k, \) and \(D_k\) from Eq. (35), and by Eq. (27), we can obtain the controller parameters \(A_1, B_1, C_1, \) and \(D_1\), having the desired propeller control structure, as shown in Eq. (25).

V. Simulations and Discussions

The simulation is conducted in the MATLAB Simulink environment. Figures 3 and 4 display the block diagrams for the flight controller design, which are used in the following time-response simulations. Figure 3 is the internal loop of the TECS closed-loop control system. Figure 4 shows the outer-loop mechanism to provide various command signals such as the guidance velocity, altitude, and flight path angle to the internal-loop control system. In Fig. 4, the block labeled “helicopter inner-loop control system” represents the whole control system contained in Fig. 3. In this simulation, the values of the normalizing parameters \(k_\lambda\) and \(k_c\), as shown in Fig. 4, are chosen as \(k_\lambda = 0.5\) and \(k_c = 0.5\).

The input signals to the time-response simulations are step commands of altitude deviation \(h_1\), velocity deviation \(v_{r_1}\), and flight path angle \(\gamma_1\). Figures 7 and 8 depict the time responses to an altitude deviation command \(h_1 = 20\) m, Figs. 9 and 10 are time responses to a velocity deviation command \(v_{r_1} = 5\) m/s, and Figs. 11 and 12 illustrate the time responses to a pulse flight-path-angle command \(\gamma_1 = 10\) deg with a duration of 50 s. The tracking performances of altitude, velocity, and flight path angle are manifested, respectively, in Figs. 7, 9, and 11, in which the dashed lines show the command signals of \(h_1, v_{r_1}, E_1, L_1, \) and \(\gamma_1\), and the solid lines show their actual time responses. The corresponding blade angle control for the preceding three command inputs is shown in Figs. 8, 10, and 12, respectively.

In the time responses to an altitude deviation command \(h_1 = 20\) m, as shown in Figs. 7 and 8, an initially increasing main rotor collective pitch provides an increasing total energy rate \(\dot{E}\) and thus accumulates a desired altitude increment. By comparing the commanded and actual energy change rate \(\dot{E}\) and distribution rate \(L\) and noting that the commanded \(E_1\) and \(L_1\) exhibit more fluctuations than their actual responses \(\dot{E}\) and \(L\), we can see that the introduced

![Fig. 7 Output responses to the commands \(h_1 = 20\) m and \(v_{r_1} = 0\) m/s.](image-url)
TECS control scheme does alleviate the unnecessary fluctuation of the energy change rate \dot{E} and the energy distribution rate \dot{L}.

In Figs. 9 and 10 regarding the time responses to a velocity deviation command $v_{Tc} = 5$ m/s, the speed increment is attained by an initially decreasing longitudinal pitch control θ_{l}, a positive lateral pitch θ_{l}, and a tail rotor collective pitch θ_{0T} to maintain torque balance and also by a positive main rotor collective pitch θ_{0} to maintain altitude. As we can see, the responses of the total energy change rate \dot{E} and the energy distribution rate \dot{L} are almost the same because the flight path angle is nearly zero in this case of zero altitude command. Furthermore, the introduced TECS scheme achieves a smooth tracking trajectory in such a way that the actual energy change and distribution rates exhibit less fluctuations than the commanded energy change and distribution rates. For the Westland Lynx helicopter, its admissible pitch angles are operated in the following ranges: $6:25$ deg $\leq \theta_{0} \leq 23.25$ deg, 8.7 deg $\leq \theta_{l} \leq 14$ deg, -7 deg $\leq \theta_{l} \leq 8$ deg, and -40 deg $\leq \theta_{0T} \leq 40$ deg. In comparison with their full operation ranges, we can see from Fig. 10 that the oscillation of the control efforts θ_{0}, θ_{l}, and θ_{0T} in the TECS scheme is comparatively small.

![Fig. 8](image1) Control pitch angles in response to the command $h_{c} = 20$ m and $v_{Tc} = 0$ m/s.

![Fig. 9](image2) Output responses to the commands $h_{c} = 0$ m and $v_{Tc} = 5$ m/s.
Figures 11 show the time responses to a feedforward flight-path-angle command \(\gamma_c = 10 \text{ deg} \) with pulse duration of 50 s. In this situation, the altitude deviation \(h \) gradually increases to reach about 435 m, as indicated by the dashed-dotted line in a unit of 100 m. The vertical speed corresponding to \(\gamma_c = 10 \text{ deg} \) is \(V_{th} \sin(\gamma_c) = 50 \sin 10 \text{ deg} = 8.68 \text{ m/s} \), and the resulting altitude change in 50 s is \(8.68 \times 50 = 434 \text{ m} \), which provides a good estimate of the altitude increment, as observed in Fig. 11. The blade pitch angles in response to this flight-path-angle command are demonstrated in Fig. 12. It can be seen that \(\theta_0 \) and \(\theta_{or} \) respond correctly to cope with the \(\gamma_c \) command, whereas the operation of the cyclic pitches \(\theta_1 \) and \(\theta_1' \) contributes to the appropriate responses of the attitude and velocity maneuvering. Meanwhile, it is noticed that the time responses of the four blade pitches all start from their trim values, as listed in Eq. (7), and return to the same trim values at the end of the \(\gamma_c \) command. As shown in Fig. 11, the TECS control mechanism again reduces the fluctuation of \(\dot{E} \) and \(\dot{L} \) in comparison with the commanded \(\dot{E}_c \) and \(\dot{L}_c \), and thus gives rise to smooth control efforts without unnecessary fluctuation. Consequently, control effort and engine energy were not wasted during this control mission.
VI. Conclusions

This paper addressed helicopter control design using the total energy control system approach. According to the total energy command, the output-feedback flight controller with H_{∞} performance was constructed by using the linear matrix inequality approach. The effectiveness of the resulting TECS design was verified in the numerical simulations, showing that a linear dynamic model of the Westland Lynx helicopter is able to achieve the expected objectives of flight stability and total energy command tracking. By using this TECS design, the pilot has a simpler operating interface; the only thing for the pilot to do is to input the desired altitude and velocity commands, or alternatively, the flight-path-angle and velocity commands, and the integrated flight/propulsion control system will perform the rest. Furthermore, under the TECS framework, not only the dynamic coupling between the velocity and altitude can be lowered, but also the magnitude constraints on the energy change rate and the energy distribution rate can be specified so that flight safety is improved and accident rates are reduced.

References